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9.1 Introduction

Automatic lesion detection in medical images has been a fundamental and crucial

topic in the area of medical image analysis. Accurate and efficient localization of the

lesions are essential for many clinical procedures, such as disease diagnosis decision-

making, primary cancer screening, management of early treatment, etc. For example,

the cerebral microbleeds serve as important diagnostic biomarkers for brain vascular

diseases, and can potentially cause neurologic dysfunction and cognitive impairment

[1,2]. The pulmonary nodules are critical indicators of primary lung cancer, and

timely surgical intervention of nodules help dramatically increase the survival rate of

patients [3,4].

The automatic detection tasks are, however, very challenging. The lesions in medical

images have very small size (i.e., at a scale of millimeter), especially when a patient is at an

early-stage cancer or other diseases. Moreover, these small lesions are sparsely distributed

throughout the anatomical area. The widespread and unpredictable lesion locations

make complete and accurate detection even more difficult. In addition, the lesions

themselves present large variations in characteristics and contextual information. There

also exist many hard mimics, which are normal tissues but heavily resemble the

appearance of lesions in scanned medical images. These complicated intra-/interclass

variances set further obstacles for a computer-aided detection system to achieve a high

sensitivity with a low false positive rate.

Typically, the automatic lesion detection system consists of two steps: (1) candidate

screening, which would sensitively screen candidates but receive many false positives,

and (2) false positive reduction, which aims to remove the false positives and produce

the final detection results. In the last generation of computer-aided detection systems,
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the first stage has relied on rule-based methods, such as curvature computation, voxel

clustering, intensity thresholding and morphological operation. The second stage

commonly has employed various classifiers, such as support vector machine (SVM),

decision tree, random forest, etc., on the basis of handcrafted features, which are

heuristically designed to describe the key characteristics of lesions, such as the

intensity, size, sphericity, texture and contexts. The representation capability of those

used low-level features have limited the accuracy of previous computer-aided

detection systems.

Recently, with the remarkable success of deep convolutional neural networks

(CNN) in image processing [5,6], the deep learning based representations have been

broadly employed in medical image computing. With the unique nature of high

dimensionality in medical images (e.g., computed tomography (CT) and magnetic

resonance (MR) imaging), how to effectively unleash the power of CNN on 3-D

volumetric medical data requires elaborated researches. One straight-forward way is

to employ 2-D CNN based on each single slice and process the slices sequentially.

Apparently, this solution disregards the spatial information along the third dimension.

Alternatively, aggregations of adjacent slices or orthogonal planes (i.e., axial, coronal

and sagittal) are useful to enhance complementary spatial information in the 3-D space.

Nevertheless, these solutions are still suboptimal, as the employed 2-D kernels are

independent from each other and the repeated patterns along the third dimension are

insufficiently modeled.

In this chapter, we present 3-D convolutional neural network (3-D CNN), which

aims to tailor highly representative and discriminative features for volumetric medical

data. We further introduce a 3-D CNN based cascaded two-step framework, to

efficiently and accurately perform the task of lesion detection from medical images. Two

distinct case studies using the developed system are demonstrated with state-of-the-art

performance achieved. Our early works related to this chapter were published in

Refs. [7e9].

9.2 3-D convolutional neural network

Basically, a CNN classification model alternatively stacks convolutional (C) and

subsamplingde.g., max-pooling (M)dlayers. In a C layer, small feature extractors

(kernels) sweep over the topology and transform the input into feature maps. In an M

layer, activations within a neighborhood are abstracted to acquire invariance to local

translations. After several C and M layers, feature maps are flattened into a feature vector,

followed by fully connected (FC) layers. Finally, a softmax classification layer yields the

prediction probability. This section describes the 3-D CNN for medical image analysis,

which also follows that fundamental construction.
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9.2.1 3-D convolutional kernel
In a typical C layer, a feature map is produced by convolving the input with convolution

kernels, adding a bias term, and finally applying a nonlinear activation function. By

denoting the i-th feature map of the l-th layer as hli and the k-th feature map of the

previous layer as hl�1
k , a C layer is formulated as:

hli ¼ s

 X
k

hl�1
k *W l

ki þ bli

!
; (9.1)

where W l
ki and bli are the filter and bias term connecting the feature maps of adjacent

layers, the * denotes the convolution operation and the s(,) is the element-wise

nonlinear activation function.

In 2-D natural image processing, the input of CNN usually consists of three color

channels (i.e., RGB). Inspired by this, the most straightforward way to adapt 2-D CNN

to support volumetric medical image processing is to replace the color channels with

adjacent slices of the volume. As shown in Fig. 9.1A, given a volumetric image of size

X � Y � Z, when we employ this scheme to generate a feature map, we first need to

split the input volume along the third dimension into Z isolated slices, and then feed

these Z isolated slices into the network. Correspondingly, Z 2-D kernels are formed,

with each single slice swept over by a unique kernel (see the red line). However, this

scheme cannot sufficiently leverage the spatial information, since the Z 2-D kernels are

different from each other. In other words, due to the absence of kernel sharing across the

third dimension, the encoded volumetric spatial information is inevitably deficient.
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Figure 9.1 Comparison of using two- and three-dimensional convolution kernels given volumetric
image with size of X � Y � Z in terms of network input, kernel behavior and generated feature map.
Red lines represent the moving direction of kernelsdi.e., sweeping over the two- and three-
dimensional topologies, respectively. (A) With the two-dimensional convolution (kernel size of
M � N), the volume is first split into Z isolated slices along the third direction and these slices are input
to the network. Each generated feature map is a two-dimensional patch. (B) With the three-
dimensional convolution (kernel size of M � N � T), the entire volume is input to the network.
Each generated feature map is a three-dimensional volume. (Note that kernel sizes M, N and T need
not to be equal. Best viewed in color.)
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Learning feature representations from all three dimensions is vitally important for

biomarker detection tasks from volumetric medical images. In this regard, we propose to

set up the 3-D convolution kernel, in the pursuance of encoding richer spatial infor-

mation of the volumetric data. In this case, the feature maps are 3-D blocks instead of

2-D patches (we call them feature volumes hereafter). As shown in Fig. 9.1B, given the

same volumetric image of size X � Y � Z, when we employ a 3-D convolution kernel

to generate a 3-D feature volume, the input to the network is the entire volumetric data.

Consequently, a 3-D kernel is formed and it sweeps over the whole 3-D topology (see

the red line). By leveraging the kernel sharing across all three dimensions, the network

can take full advantage of the volumetric contextual information.

Generally, the following equation formulates the exploited 3-D convolution oper-

ation in an element-wise manner:

ulkiðx; y; zÞ ¼
X
m;n;t

hl�1
k ðx� m; y� n; z� tÞW l

kiðm; n; tÞ; (9.2)

whereW l
ki denotes the 3-D kernel in the l-th layer which convolves over the 3-D feature

volume hl�1
k , theW l

kiðm; n; tÞ is an element-wise weight in the 3-D convolution kernel.

Following Eq. (9.1) and Eq. (9.2), the 3-D feature volume hli is obtained by summing

over the 3-D convolution kernels:

hli ¼ s

 X
k

ulki þ bli

!
: (9.3)

9.2.2 3-D CNN hierarchical model
With the 3-D convolutional kernel and the layer, we can hierarchically construct a deep

3-D CNNmodel by stacking the C, M, and FC layers, as shown in Fig. 9.2. Specifically,

in the C layer, a series of 3-D feature volumes are produced. In the M layer, the max-

pooling operation, or any other down-sampling operation, is also conducted in the

3-D fashiondi.e., the feature volumes are subsampled based on a cubic neighborhood.

In the following FC layer, the 3-D feature volumes are flattened into a feature vector as

its input. The ultimate output layer employs the softmax activation to yield the pre-

diction probabilities for the input image.

During 3-D CNN implementation, the nonlinear activation function (e.g., the

ReLU or LeakyReLU) is used in C and FC layers. The 3-D convolution kernels are

randomly initialized from the Gaussian distribution and trainable parameters in the

network are updated using the standard backpropagation with stochastic gradient descent

or other advanced optimizers. The loss function is derived according to the specific task

aiming to solve, for example, the cross-entropy loss for classification tasks, the Dice loss

for segmentation tasks, or the adversarial loss for generative model. The developed useful
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strategies which can benefit the learning procedure, such as dropout, batch normaliza-

tion, and residual connection, can be seamlessly embedded into the 3-D convolutional

neural network.

9.3 Efficient fully convolutional architecture

One of the main concerns about exploiting CNN in medical imaging domain lies

in the time performance, as many medical applications require prompt responses for

further diagnosis and treatment. The situation is more rigorous when processing volu-

metric medical data. Directly applying 3-D CNNs to detect lesions using the traditional

sliding window strategy is usually impracticable, especially when the input volumetric

images are acquired with high resolutions, because thousands or even millions of 3-D

block samples need to be analyzed. In most biomarker detection applications, the tar-

gets are usually sparsely distributed throughout the volume, such as the microbleed in the

3-D brain MR image. To this end, one promising solution for detection is to first obtain

the candidates with a high sensitivity and then perform fine-grained discrimination only

on these candidates, so that the computational cost can be greatly reduced. Previous

work proposed to retrieve lesion candidates (also called regions-of-interest in some

papers) by employing local statistical information, including size, intensity, shape and

FC2
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Figure 9.2 The hierarchical architecture of the 3-D CNN model.

Automatic lesion detection with three-dimensional convolutional neural networks 269



other geometric features [10e12]. However, due to the large variations of lesions, only

relying on these statistical values or handcrafted features are not effective enough.

We propose to use 3-D CNN to robustly screen candidates by leveraging high-level

spatial representations of lesions learned from a large number of 3-D training samples.

However, we still face the challenge of time performance when employing 3-D CNN to

retrieve candidates with the traditional sliding window strategy. To this end, inspired by

the 2-D fully convolutional networks (FCNs) [13], we propose to extend the strategy

into a 3-D format for efficient retrieval of the candidates from volumetric medical

images. The proposed 3-D FCN can take an arbitrary-sized volume as input and produce

a 3-D score volume within a single forward propagation, and hence can greatly speed up

the candidate retrieval procedure without damaging the sensitivity.

9.3.1 Fully convolutional transformation
In a 3-D CNN architecture, both the convolutional and down-sampling layers can

process arbitrary-sized input, where convolution or max-pooling kernels sweep over the

input and generate the corresponding-sized output. However, the traditional FC layers

flatten the feature volumes into vectors thus dismissing the spatial relationships. These FC

layers then utilize vector-matrix multiplications to generate the output, as shown in the

following:

hl ¼ s
�
W lhl�1 þ bl

�
; (9.4)

where hl�1˛ℝP and hl˛ℝQ are the feature vectors in the (L-1)-th and the l-th FC layers,

respectively, W l˛ℝQ�P is the weight matrix and bl denotes the bias term.

In traditional CNN, once trained, the weightW l is with a fixed shape, and hence the

FC layer has fixed input/output sizes. As a result, a network with traditional FC layers

requires that the initial inputs have a fixed size. For example, when the network is trained

based on 3-D samples of size 16 � 16 � 10, errors will arise if we input a test sample of

size 20 � 16 � 10, due to the shape mismatch in the first dimension.

In this regard, we equivalently rewrite the FC layers into the following convolutional

format:

hlq ¼ s

 X
p

hl�1
p *W l

pq þ blq

!
; (9.5)

where each neuron in the FC layer is regarded as a 1 � 1 � 1 feature volume, W l
pq˛

ℝ1�1�1 is the 3-D kernel and the * is the 3-D convolution operation described in

Eq. (9.2). In this way, the vector-matrix multiplications are formulated as convolution

operations with 1 � 1 � 1 kernels. With the FC layers converted into convolutional

layers, the network could therefore support arbitrary-sized input.
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9.3.2 3-D score volume generation
During the training phase, a traditional 3-D CNN model is learned. Once training is

done, to acquire the 3-D FCN model, the FC layers in the traditional 3-D CNN are

transformed into the convolutional fashion. More specifically, the multiplication matrix

W l˛ℝQ�P is reshaped into a 5D tensor W l˛ℝQ�1�P�1�1 (the dimensions are ordered

for the ease of implementation), and hence the weight matrix is converted into a series of

convolution kernels. During the testing phase, the 3-D FCN model directly inputs a

volume and outputs a 3-D score volume (with reduced resolution compared with the

original input size). The value at each location of score volume indicates the probability

of being a lesion.

There are some implementation issues needed to be handled when developing the

3-D FCN model. Specifically, when converting the traditional FC layers into the

convolutional fashion by casting the 2-D multiplication matrix (ℝQ�P) into the 5D

tensor (ℝQ�1�P�1�1), we should precisely maintain the spatial correlation. In addition,

during whole volume testing, we need to ensure the dimension consistency in the lo-

gistic regression layer, where the feature volumes are first flattened into vectors, then

applied to the softmax function and finally reshaped back to form the 3-D score volume.

One alternative practice is to directly train the model in an FCN format, such that there

are only convolutional and down-sampling layers in the network, without any FC layer.

9.3.3 Score volume index mapping
Due to successive layers of convolution and down-sampling operations, the size of the

generated 3-D score volume is reduced compared with the original input. Actually, the

3-D score volume is a coarse version of the voxel-wise predictions which are produced

by the sliding window strategy. Meanwhile, the locations on this coarse score volume can

be traced back to the coordinates on the original input space.

Since all three dimensions follow the same index mapping mechanism, we

demonstrate the mapping process with one dimension. In our formulation, indices are

numbered from zero. Generally, for each C or M layer (supposing nonpadding convo-

lution and nonoverlap pooling) in the model, the index mapping procedure with

convolution or max-pooling operation can be calculated by:

x0 ¼ d$xþ
�
c � 1

2

�
; (9.6)

where x0 and x denote the coordinates before and after the convolution or max-pooling

operation; d and c represent the stride and kernel size, respectively; the P,R represents the
floor function.

When mapping the location xs in the coarse score volume back through the

architecture toward the location xo in the original input volume, we successively deduce
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the index mapping procedures along all intermediate convolution and max-pooling

layers until the initial input layer. For example, based on the screening network archi-

tecture shown in Table 9.1, for each position index xs in the coarse score volume, we can

obtain its corresponding index xo in the original input as follows:

xo ¼
�
c1 � 1

2

�
þ
�
c2 � 1

2

�
þ d2,

 
xs þ

�
c3 � 1

2

�
þ

�
c4 � 1

2

�
þ
�
c5 � 1

2

�
þ
�
c6 � 1

2

�!
¼ D,xs þ C;

(9.7)

where, according to the network architecture, c1 ¼ 5, c2 ¼ 2, d2 ¼ 2, c3 ¼ 3, c4 ¼ 3,

c5 ¼ 2, c6 ¼ 1, and we can calculate D ¼ 2 and C ¼ 6 for the X dimension.

As shown in Fig. 9.3, with this mechanism, each location in the 3-D score volume

can be mapped back to the centroid of the corresponding receptive field of the neuron.

Table 9.1 The architecture of three-dimensional FCN screening model.
Layer Kernel size Stride Output size Feature volumes

Input e e 16 � 16 � 10 1

C1 5 � 5 � 3 1 12 � 12 � 8 64

M1 2 � 2 � 2 2 6 � 6 � 4 64

C2 3 � 3 � 3 1 4 � 4 � 2 64

C3 3 � 3 � 1 1 2 � 2 � 2 64

FC1 2 � 2 � 2 1 1 � 1 � 1 150

FC2 1 � 1 � 1 1 1 � 1 � 1 2

3D score volume 

Original input space 

Mapping ReceRece

Figure 9.3 The mapping from the three-dimensional score volume onto the original input space.
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Equivalently, if the cubic patch centered on the traced position is input to the traditional

3-D CNN, the prediction probability is indeed the value at the location on the coarse

score volume. Consequently, the prediction scores are sparsely mapped back onto the

input volume, and regions with high probabilities are retrieved as potential candidates.

9.4 Two-stage cascaded framework for detection

Based on 3-D CNN and the fully convolutional architecture, we build a detection

network modeling. Specifically, we use a 3-D FCN model and a 3-D CNN model

tailored for two different stages and integrate them into an efficient and robust detection

framework. In this cascaded framework for lesion detection, each stage serves its own

mission. The candidate screening stage with the 3-D FCN aims to accurately reject the

background regions and rapidly retrieve a small number of potential candidates. The false

positive reduction stage with the 3-D CNN focuses only on the screened set of can-

didates to further single out the true lesions from challenging mimics.

9.4.1 Candidate screening stage
The workflow of the candidate screening stage is presented in Fig. 9.4, including both

training and testing phases. During the training phase, the positive samples are extracted

from lesion regions and with augmentations to expand the training database. In practice,

the network is trained with three substeps. We start from training an initial 3-D CNN

with randomly selected nonlesion regions throughout the image as negative samples.

Next, we add false positive samples acquired by applying the initial model on the training

dataset. Finally, the initial model is fine-tuned with the enlarged training database which

consists of positives, randomly selected negatives and supplemental false positives. In this

way, the discrimination capability of the network is further enhanced. During the testing

phase, the 3-D FCN model takes the whole volume as input and generates the corre-

sponding coarse 3-D score volume.

Considering that the produced score volume could be noisy, we utilize the local

nonmax suppression in a 3-D fashion as the postprocessing. Locations in the 3-D score

volume are then sparsely traced back to coordinates in the original input space, according

to the index mapping process. Finally, regions with high prediction probabilities are

selected as the potential candidates.

9.4.2 False positive reduction stage
In this stage, 3-D small blocks are cropped centered on the screened candidate positions.

The extracted 3-D candidate regions are classified by a newly constructed 3-D CNN

model, to remove the remaining false positives. Note that the randomly selected non-

lesion samples are not strongly representative, especially when we aim to distinguish true
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lesions from their mimics. To generate representative samples and improve the

discrimination capability of the 3-D CNN model, the obtained false positives (which

take very similar appearance as lesions) on the training set in the screening stage are taken

as negative samples when training the 3-D CNN in the second stage. The model

ensemble can be employed in this stage to further improve the performance.

Training set

Traditional
3D CNN

Fine-tuned 
traditional

3D CNN
Positive samples

Randomly negative 
samples

False positive 
samples

Training phase

(2)

(3)

(1)

Convert traditional FC layers

1x1x1 kernelsWeight matrix

C3 FC2

Testing volume

Testing phase (3D FCN)

C1, M1

C2

3D score volume

Mapping

Candidates

Feature volumeFeature volume

Figure 9.4 Illustration of the workflow of the screening stage. The training phase is conducted in
three substeps: (1) train an initial traditional 3-D CNN with positive samples and randomly selected
negative samples; (2) apply the initial model on training set and obtain false positive samples to
enlarge the training database; (3) fine-tune the initial traditional 3-D CNN model with the enlarged
database to strengthen its discrimination capability. Once training is done, the traditional FC layers are
converted into the convolutional fashion (as shown in the brown box). During the testing phase, the
3-D FCN takes a whole volume as input, extracts representative feature volumes and finally produces a
3-D score volume to retrieve candidates.
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9.5 Case study I: cerebral microbleed detection in brain magnetic
resonance imaging

9.5.1 Background of the application
Cerebral microbleeds (CMBs) refer to the small foci of chronic blood products,

composed of the hemosiderin deposits that leak through pathological brain blood vessels

[2]. This lesion is prevalent in patients with cerebrovascular and cognitive diseases (such

as stroke and dementia), and also present in healthy aging populations. The existence of

cerebral microbleeds and their distribution patterns have been recognized as important

biomarker for diagnosis of the cerebrovascular diseases. For example, the CMB lobar

distribution would suggest probable cerebral amyloid angiopathy, and the deep hemi-

spheric or infratentorial microbleeds may imply probable hypertensive vasculopathy. The

existence of CMBs would bring an increase in the risks of symptomatic intracerebral

hemorrhage and recurrent ischemic stroke [14]. Furthermore, these lesions could

structurally damage their nearby brain tissues, and further cause cognitive impairment

and neurologic dysfunction [15]. In these regards, reliable detection of the CMB is

crucial for cerebral diagnosis and may guide physicians in determining which drug to

choose for necessary treatment, such as for stroke prevention.

Modern advances in MR imaging technologies make the paramagnetic blood

products be more sensitive to screening [16], and hence facilitate the recognition of

CMBs. As shown in Fig. 9.5, the cerebral microbleed is radiologically visualized as

rounded hypointensities of small size within the susceptibility weighted imaging (SWI)

MR data (refer to the yellow rectangle). In general, the clinical routine to detect the

CMB is based on visual inspection and manual localizing, which is laborious and error-

prone. Alternatively, computer-aided detection systems can assist to relieve the workload

Figure 9.5 Illustration of a CMB and a CMB mimic denoted with the yellow and red rectangles,
respectively. In each of the big rectangle, the rows demonstrate adjacent slices in axial, sagittal and
coronal planes, from top to down. The importance of 3-D information can be observed.
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on radiologists and also improve clinical efficiency. However, the automatic detection of

CMBs can encounter several challenges: (1) the small size of lesions; (2) the widespread

distributed locations of lesions; (3) the existence of hard mimics (e.g., flow voids,

calcification and cavernous malformations) which would resemble the appearance of

CMBs and heavily impede the detection process.

9.5.2 Dataset, preprocessing and evaluation metrics
Our employed dataset includes 320 SWI images with 1149 CMBs scanned from a 3.0T

Philips Medical System with 3-D spoiled gradient-echo sequence using venous blood

oxygen level dependent series with the following parameters: repetition time 17 ms,

echo time 24 ms, volume size 512 � 512 � 150, in-plane resolution 0.45 � 0.45 mm,

slice thickness 2 mm, slice spacing 1 mm and a 230 � 230 mm2 field of view. The subjects

were from two separated groups: 126 cases with stroke (mean age � standard deviation:

67.4 � 11.3) and 194 cases of normal aging (mean age � standard deviation:

71.2 � 5.0).

The dataset was labeled by an experienced rater and was verified by a neurologist

following the guidance of the Microbleed Anatomical Rating Scale [17]. We employed

the Pearson correlation coefficient (PCC) to assess the interobserver agreement between

the two raters [18]. Due to the large dataset and expensive manual annotation efforts, we

tested the interobserver agreement with a subset of 20 subjects (including 10 cases with

stroke and 10 cases of normal aging). The PCC turned out to be 0.91 (P < .01), which

indicates a high degree of agreement between the two raters. Overall, a total of 1149

CMBs were annotated from the whole dataset and regarded as the ground truth in our

experiments.

We randomly divided the dataset into three parts for training (230 cases with 924

CMBs), validation (40 cases with 108 CMBs) and testing (50 cases with 117 CMBs). In

the preprocessing step, the volume intensities are normalized to the range of [0,1] with

I 0 ¼ I � Imin

Imax � Imin
; (9.8)

where I and I 0 represent the original and normalized intensity value, respectively. The

Imax is the maximum intensity value after trimming the top 1% grayscale intensities and

the Imin is the minimum grayscale value of the volume.

We employed three metrics to quantitatively evaluate the performance on the task of

CMB detection, including sensitivity (S), precision (P) and the average number of false

positives per subject (FPavg):

S ¼ TP

TPþ FN
;P ¼ TP

TPþ FP
; FPavg ¼ FP

N
; (9.9)
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where TP, FP and FN denote the total number of true-positive, false-positive and false-

negative detection results, respectively. The N represents the number of subjects in the

testing dataset.

9.5.3 Experimental results
For the first stage, we compared the candidate screening performance of the 3-D CNN

based method with two state-of-the-art approaches, which utilize low-level statistical

features [10,19]. We implemented these comparison approaches and employed them on

our testing dataset. The results are listed in Table 9.2. The values of sensitivity mean the

percentage of successfully retrieved CMBs while the values of FPavg describe the number

of remaining false positives per subject. The fewer false positives produced, the more

powerful discrimination capability a screening method has. The proposed 3-D FCN

model achieves the highest sensitivity with fewest average number of false positives,

which highlights the efficacy of the proposed method.

Note that our method outperforms the other two methods by a large margin. We

have also recorded the average time for screening each subject and the results are listed in

Table 9.2. From the clinical perspective, the time performance of our method is satis-

factory; processing a whole volume with a size of 512 � 512 � 150 takes around 1 min.

The method of [10] is slower than ours because it calculates local thresholds using a

voxel-wise sliding window way. In contrast, the method of [19] merely exploits global

thresholding on intensity and size, hence it has a much faster screening speed.

For the candidate screening stage, the retrieval accuracy is vitally important, because

we cannot refind the CMBs that are missed by the screening stage in the following

discrimination stage. Although [19] is faster, we achieved around 8% increase in sensi-

tivity and reduced the number of FPavg from 935.8 to 282.8, when compared with this

method. These results provide a much more reliable basis for further fine discrimination.

By employing the 3-D FCN, our method achieves a good balance between retrieval

accuracy and speed. Typical candidate screening results by the proposed 3-D FCN are

shown in Fig. 9.6. It is observed that high values on the score volume mostly correspond

to CMB lesions. In addition, most of the backgrounds have been successfully suppressed

as zeros. After thresholding, only a small number of candidates are obtained (see those

white rectangles), which dramatically reduces the computational workload in the

following stage.

Table 9.2 Comparison of different CMB lesion candidate screening methods.
Methods Sensitivity FPavg Time per subject (s)

Barnes et al. [10] 85.47% 2548.2 81.46

Chen et al. [19] 90.48% 935.8 12.00

3-D FCN model 98.29% 282.8 64.35
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In the second stage, we independently trained three models using the network ar-

chitecture presented in Table 9.3. The differences of the three convolutional networks lie

in the random weights initialization states and the training epochs. The deep network

with a large number of parameters usually comes with a low bias and a large variance. By

averaging multiple models with different weight initializations and different early stop-

ping conditions, the model variance can be reduced, and thus the discrimination

capability is further boosted [21].

We compared the performance of our lesion detection method with three other

approaches. These methods were implemented on our dataset for direct comparison.

The first one utilized handcrafted features based on shape and intensity information [10].

The second one constructed a random forest classifier with low-level features, which is

widely used for 3-D object detection applications in medical imaging. The third one

utilized a 2-D CNN and process the concatenated 2-D features with an SVM [19].

Table 9.4 shows the comparison results of different lesion detection methods and the

FROC curves of these methods are presented in Fig. 9.7. It is clearly observed that our

proposed methods outperform the other three comparison approaches by a significant

margin with the highest detection sensitivity as well as the fewest false positive
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Figure 9.6 Typical results of the three-dimensional FCN screening model with score volume pro-
jection onto the axial plane. (A) Raw data with true CMBs (yellow rectangles). (B) two-dimensional
projection of the score volume generated with FCN. (C) two-dimensional projection of the post-
processed score volume. (D) Retrieved candidates (white rectangles). Best viewed in color.

Table 9.3 The architecture of three-dimensional CNN used for false positive reduction.
Layer Kernel size Stride Output size Feature volumes

Input e e 20 � 20 � 16 1

C1 7 � 7 � 5 1 14 � 14 � 12 32

M1 2 � 2 � 2 2 7 � 7 � 6 32

C2 5 � 5 � 3 1 3 � 3 � 4 64

FC1 e e 1 � 1 � 1 500

FC2 e e 1 � 1 � 1 100

FC3 e e 1 � 1 � 1 2
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predictions. Although the 2-DeCNNeSVM method can not sufficiently leverage the

3-D spatial characteristics of the microbleed lesions, the high-level features even

encoding limited spatial information obtained better detection performance than the

other two methods employing traditional low-level features. The comparison results

between our 3-D CNN based methods and the 2-DeCNNeSVM approach demon-

strate that our framework benefits from the high-level features which can encode richer

spatial information by taking advantage of the 3-D convolutional architectures. Utilizing

the model average in the second discrimination stage can further improve the overall

lesion detection performance. Fig. 9.8 present typical examples of successfully detected

CMBs. In Fig. 9.8 left, there are a number of hard mimics (white rectangles) around the

two true CMBs (green rectangles). Our method is able to precisely distinguish them. In

Fig. 9.8 right, the two CMBs are sparsely distributed in the volume with one of them

locating at almost the boundary of the volume. In this condition, our method can still

accurately detect both of them.

Table 9.4 Evaluation of cerebral microbleed detection results.
Methods Sensitivity Precision FPavg

Barnes et al. [10] 64.96% 5.13% 28.10

Random forest [20] 85.47% 17.24% 9.60

2-DeCNNeSVM [19] 88.03% 22.69% 7.02

Ours (single) 92.31% 42.69% 2.90

Ours (average) 93.16% 44.31% 2.74
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Figure 9.7 Comparison of FROC curves of different methods. The top two lines are results produced
by our 3-D CNN based cascaded frameworks.
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9.6 Case study II: lung nodule detection in chest computed
tomography

9.6.1 Background of the application
Lung cancer has been among the leading cause of cancer deaths worldwide, and early

detection of the lung nodules from low-dose CT scans is crucial for diagnosis of primary

lung cancer and arrangement of necessary early treatment. In radiology scans, the pul-

monary nodules are visible as small anatomical structures that are roughly spherical

opacities within the pulmonary interstitium images [22]. Based on reliable detection of

primary nodules, radiologists and surgeons can perform the size measurements and

appearance characterizations for diagnosis of cancer malignancy [4] and, if necessary,

conduct timely surgical intervention to increase the survival chances of the patients

[3,23]. Annual lung cancer screening for those high-risk populations, such as smokers,

has already been implemented in some countries, acquiring enormous CT data for

clinical radiologists to analyze. It would be quite difficult, if not impossible, to manually

screen the CT scans considering the huge requirement of manpower and the time costs.

Automated recognition of lung nodules in thoracic CT images is, however, among

the most challenging problems in computer-aided detection [24]. First, the lung nodules

come with large variations in sizes, shapes and locations [25], as presented in the green

rectangle in Fig. 9.9. In addition, the contextual environments around the pulmonary

Figure 9.8 Examples of CMB detection results (viewed in axial planes). Green rectangles denote the
correctly detected CMBs and white rectangles denote the removed false positive candidates by our
method.
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Figure 9.9 Examples of the pulmonary nodules with various sizes, shapes and locations (green
rectangle), and the false positive candidates (red rectangle) which carry similar appearance and make
the task challenging. Each example is a representative 2-D transverse plane of one nodule.
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nodules are often diversified for different categories of the nodules, such as solitary

nodules, ground-glass opacity nodules, cavity nodules and pleural nodules [26]. Second,

some false positive candidates may carry very similar morphological appearance to the

true lung nodules, as illustrated in the red rectangle in Fig. 9.9. The existence of these

hard mimicking regions would heavily hinder the lesion detection process.

9.6.2 Improved learning strategy
Online Sample Filtering Strategy. For the candidate screening stage, we also employ

the 3-D FCN, as it can not only encode rich volumetric spatial information to extract

high-level representations for accurate candidate retrieval, but also rapidly generate the

probability predictions in a volume-to-volume manner. More specifically, we construct a

binary classification 3-D model which is consisted of five convolutional layers and one

max-pooling layer. The screening network is learned with small 3-D patches of nodules

and nonnodules and tested on the entire CT image in a fully convolutional manner (i.e.,

inputing the whole volumetric image and directly obtaining a 3-D score volume). In the

following, we can retrieve lesion candidates based on the score volume with the sus-

picious probability of each location indicated, following the aforementioned mechanism

of index mapping in Eq. (9.6).

However, given the severe imbalance between hard and easy samples, it is challenging

to train the network and achieve a high-quality score volume. On one hand, an over-

whelming amount of background samples are very easy to be recognized thus contribute

little to model optimization. On the other hand, the number of hard samples (for

example the mimics) is quite small, but they are challenging to be distinguished and

therefore considered to be more informative for learning. Actually, the situation of

sample imbalance is a very common problem in many biomedical detection tasks.

Previous boosting methods would consecutively establish an ensemble of learners, where

the misclassified hard samples from the former model were traced to train the next

model, just as how we did for CMB detection. These methods repeatedly test the ob-

tained model on all the training data, which would complicate the entire training process

and incur additional computations (Fig. 9.10).

To tackle this problem, we further propose an online sample filtering scheme which

can dynamically increase the proportion of hard training samples, borrowing the spirit of

hard example mining originally employed for natural object detectors [27]. Superior to

those previous boosting methods, our proposed scheme can select the hard examples on-

the-fly during the stochastic gradient descent process, and it neither interrupts the

normal learning process nor engages additional testing computations.

Our online sample scheme is constructed based on the observation that those hard

samples usually produce higher classification loss compared with those easier ones. In this

regard, we can dynamically obtain the hard samples based on the loss in every forward
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propagation during training. During the implementation, we randomly extract the initial

training samples with a large batch size. After forward propagation of each batch, the

samples are sorted by their loss, and we take the top 50% samples on which the current

network performs worst as hard samples. Meanwhile, we randomly retain half of the

remaining low-loss samples as easy samples. These are fairly reasonable choices to design

the learning strategy, considering the balance for training patches. Finally, we exclude

those less-informative examples from the current iteration of the optimization. By

performing these online modifications to the stochastic gradient descent procedure, our

proposed scheme is intuitive yet effective to train the model and speed up the conver-

gence rate.

Multi-task Learning with Hybrid Loss. Aiming to accurately recognize the true

pulmonary nodules from screened candidates, we exploit a 3-D CNN equipped with a

3-D variant of deep residual learning technique and a designed hybrid-loss objective

function. We establish a modularized 3-D residual unit xout ¼ xinþF(xin,{Wk}), where

the xin and xout are its input and output; the F(,) represents 3-D residual

transformationdi.e., a stack of convolutional, batch normalization and ReLU layers that

are associated with the collection of parameters {Wk}. It has been evidenced that the

utilized residual units can boost the information flow within the neural network and

hence benefit the optimization.

Besides the small interclass variation between the true lung nodules and hard mimics,

another challenge is that the proposal positions from 3-D FCN might deviate from the
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Figure 9.10 Candidate screening with the strategy of online sample filtering.
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ground truth pulmonary nodule centroids, due to the translation invariance inherited in

the network. This would lead to shift of true lung nodule locations when we center at the

FCN proposal positions to crop sample patches for processing in the second stage for

false positive reduction. Under this setting, further leveraging localized annotationsd
i.e., where and how large a lung nodule isdcan be beneficial to explicitly guide the

learning to particularly focus on the targeted lesion regions. With these considerations,

we design a novel hybrid-loss objective function, which jointly considers both classifi-

cation errors and localized information. The constructed network simultaneously op-

timizes a classification branch and a regression branch, by sharing the network weights in

early layers.

With a set ofN training pairs of samples
��

Xi;Yi;Gi
��

i¼1;.;N
, the shared early-layer

parameters Ws and the classification branch parameters Wcls in the residual network, the

classification loss is formulated as the negative log-likelihoods as follows:

Lcls ¼ � 1

N

X
i

log p
�
Yi
��Xi;Ws;Wcls

�
: (9.10)

For the regression branch accounting nodule size and location, considering that we

are targeting 3-D objects, our localization ground truth Gi ¼
	
Gi

x;G
i
y;G

i
z;G

i
d



is

represented by four parameters, with
	
Gi

x;G
i
y;G

i
z



and Gi

d respectively denoting the

centroid and diameter of the nodule. Denoting the position proposed via 3-D FCN by

Pi ¼
	
Pi
x;P

i
y; P

i
z



, and the second stage cropped patch size by S¼(Sx, Sy, Sz), we define

the continuous-valued regression target Ti ¼
	
Ti
x;T

i
y;T

i
z;T

i
d



as follows:

Ti
x ¼ 2

�
Gi

x � Pi
x

�
Sx

;Ti
y ¼

2
	
Gi

y � Pi
y



Sy

;

Ti
z ¼ 2

�
Gi

z � Pi
z

�
Sz

;Ti
d ¼ log

0B@ Gi
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2x þ S2y þ S2z

q
1CA;

(9.11)

where T i specifies a scale-invariant translation and log-space size shift which is relative to

the cropped patch size S. Considering the candidate proposal P i is close to the ground

truth lung nodule centroid, we divide their relative distance with half of the patch size for

normalization purpose. Denoting the output of the regression branch bybT i ¼ f
�
Xi;Ws;Wreg

�
, the loss from location information of each training sample i is:

Li
loc ¼

X
˛fx;y;z;dg

1
�
Yi ¼ 1

�
, dist

	
Ti
g� bT i

g



; (9.12)
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where the function dist(a) ¼ 0.5a2 if jaj<1, otherwise jaj�.5, which is a robust L1 loss

and is validated to be less sensitive to outliers than the L2 loss [28]. The 1(Y
i ¼ 1) is the

indicator function, with which we can only consider the localization loss for those

positive samples, and ignore those nonnodule training samples without size notion.

Overall, our hybrid-loss objective function is formulated as follows:

L ¼ Lcls þ l
1

Nreg

X
i

Li
loc þ b

�����Ws

��j22 þ ����Wcls

��j22 þ ����Wreg

��j22�: (9.13)

The first term represents nodule classification loss. The second term denotes the

localization loss, where the Nreg represents the number of positive samples considered in

the regularization. The third term indicates the weight decay of the shared, classification

and regression parameters. The l and b are balancing weights of the terms.

9.6.3 Dataset, preprocessing and evaluation metrics
We evaluated our method on a large-scale benchmark dataset, which was released during

the conference of ISBI 2016 for the LUNA16 Challenge. The dataset filtered out 888

CT scans from the publicly available Lung Image Database Consortium (LIDC) database

[24]. The volumetric images were with a resolution in the transverse plane as 512 � 512,

an element spacing of 0.74 � 0.74 mm2, and variable slice thickness but not larger than

2.5 mm. The labels (including the location centroids and diameters) of pulmonary

nodules were collected with a two-phase manual annotation process conducted by four

experienced thoracic radiologists. During the labeling process, each radiologist marked

the identified lesions as nonnodule, nodule < 3 mm, and nodules >¼ 3 mm. The

challenge selected a total of 1186 lung nodules >¼ 3 mm accepted by three or four

radiologists as the ground truth. The annotations that were failed to be included in the

reference standard (i.e., nonnodules, nodules < 3 mm, and nodules annotated by merely

one or two radiologists) were referred to as irrelevant findings.

For preprocessing the CT scans, we clipped the grayscale values into the interval of

(�1000, 400) Houndsfield units and normalized them into the range of (0, 1). The mean

intensity was subtracted before inputting the samples to the network. We conducted a

series of augmentations for the positive nodule samples, including random translation

within the radius region of the pulmonary nodule, flipping, random scaling between

[�0.9, þ1.1], and random rotation of [90, 180, 270] degrees in the transverse plane.

When training the multi-tasking neural network, we set a relatively small training

patch size [30 � 30 � 10] in the candidate screening stage for fast processing, and the

second stage utilized a larger size [60 � 60 � 24] to include richer contextual infor-

mation to accurately detect nodules. The 3-D fully convolutional model was randomly

initialized from a Gaussian distribution N ð0; 0:01Þ, and we initialized the learning rate as
0.001. When training the hybrid-loss 3-D residual network, the first three convolutional
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layers were initialized from the FCN model and the remaining parameters of deeper

layers were randomly initialized as in Ref. [29]. The convolution layers in the residual

units utilized padding to maintain dimension of the feature volumes. The trade-off

parameters l and b were set as 0.5 and 1e-4, respectively.

The detection performance was evaluated by measuring the sensitivity and average

false positive rate per scan, as defined in the challenge. A predicted candidate location was

counted as the true positive if it was positioned within the radius of a true lung nodule

center. Detections of irrelevant findings were not considered (i.e., regarded as neither

false positives nor true positives) in the evaluation. We conducted the free receiver

operation characteristic (FROC) analysis by setting different thresholds on the raw

prediction probabilities. The evaluation also computed the 95% confidence interval with

the bootstrapping [30]. A competition performance metric (CPM) score [31], which was

measured as the average sensitivity at seven predefined false positive rates: 1/8, 1/4, 1/2,

1, 2, 4 and 8 false positives per patient, was calculated.

9.6.4 Experimental results
To investigate the contribution of our proposed learning strategies, extensive ablation

experiments are conducted for analysis. We first assess the capability of screening lung

nodule candidates using the 3-D FCN trained to convergence with and w/o the online

sample filtering (OSF) scheme. The results are presented in the first two columns of

Table 9.5. We can observe that training with online sample filtering strategy significantly

improves the candidate screening performance by increasing the sensitivity from 94.3%

to 97.1% and reducing the FPs/scan rate from 286.2 to 219.1. The improvements present

that selecting the high-loss samples (hard samples) with the online sample filtering

strategy can greatly enhance the network’s discrimination capability and improve the

performance.

To evaluate the effectiveness of the residual learning technique and the hybrid-loss

objective equipped in our model for false positive reduction, we implemented three

different networksdi.e., plain deep network (DeepNet), residual network (ResNet),

and our proposed novel hybrid-loss residual network (ResNet þ HL)daccording to the

architecture illustrated in Fig. 9.11. Their results are presented in the last three columns

of Table 9.5. With 1.0 FPs/scan, the three networks achieve detection sensitivities of

84.8%, 86.7%, and 90.5%, demonstrating that while the residual learning technique can

Table 9.5 Evaluation of the learning strategies in our detection framework.
Stages Candidate screening False positive reduction

Methods FCN FCN þ OSF DeepNet ResNet ResNet þ HL

Sensitivity 94.3% 97.1% 84.8% 86.7% 90.5%

FPs/scan 286.2 219.1 1.0 1.0 1.0

286 Qi Dou, Hao Chen, Jing Qin and Pheng-Ann Heng



improve the performance of traditional networks by facilitating gradients flow during

optimization, the proposed hybrid-loss objective function can further boost the detec-

tion performance by additionally supervising the learning with location and size infor-

mation. Fig. 9.12 presents the free-response receiver operating characteristic (FROC)

curves of three networks, for more comprehensive comparison at a wider range of the

false positive rates. It is observed that the proposed ResNet þ HL continually obtains the

best performance among these three configurations.

For overall lung nodule detection results, Table 9.6 reports the performance of our

method and that of other approaches in the LUNA16 challenge. In fact, all participates

employed deep learning based approaches, and we refer readers to Ref. [32], a

comprehensive summary of LUNA16, to learn more details of other participating

methods. It is observed from Table 9.6 that our proposed method achieves a CMP score

of 0.839, which set state-of-the-art results. At the false positive rate of 0.5, 1, 2, four and

eight per scan, our detection framework achieved the sensitivity of 81.9%, 86.5%, 90.6%,

93.3% and 94.6%, respectively, which are the highest among comparison methods. It is

reported that, in real-world clinical practice, the FPs/scan scales between one and four

are the mostly concerned [33]. Our proposed method achieves a sensitivity of 90.6% at

two FPs/scan, highlighting its promising potential to be readily exploited in real clinical

practice.

In Fig. 9.13, we depict typical examples of final detection results with the classifi-

cation probability and regressed diameter indicated. We can observe that our model can

recognize the various lung nodules with a high probability, as well as reliably predict the

Figure 9.11 False positive reduction with multi-task and hybrid-loss learning.
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size of the detected nodules. Last but not least, our proposed lesion detection framework

is quite efficient taking less than 1 minute for one case, which enables our method to be

competent for performing large-scale data processing, such as the annual lung cancer

screening program which is launched for high-risk populations.

9.7 Discussion

To illustrate the discrimination capability of intermediate features, the represen-

tations extracted by the 2-D CNN and 3-D CNN models on the CMB detection task

Table 9.6 Comparison with other lung nodule detection methods in LUNA16 Challenge.
Teams 0.125 0.25 0.5 1 2 4 8 CPM score

DIAG_ConvNet 0.692 0.771 0.809 0.863 0.895 0.914 0.923 0.838

ZENT 0.661 0.724 0.779 0.831 0.872 0.892 0.915 0.811

Aidence 0.601 0.712 0.783 0.845 0.885 0.908 0.917 0.807

MOT_M5Lv1 0.597 0.670 0.718 0.759 0.788 0.816 0.843 0.742

VisiaCTLung 0.577 0.644 0.697 0.739 0.769 0.788 0.793 0.715

Etrocad 0.250 0.522 0.651 0.752 0.811 0.856 0.887 0.676

Our method 0.659 0.745 0.819 0.865 0.906 0.933 0.946 0.839

Figure 9.12 Comparison of FROC curves using different network configurations for lung nodule
detection, with shaded areas presenting the 95% confidence interval.

288 Qi Dou, Hao Chen, Jing Qin and Pheng-Ann Heng



are embedded into the 2-D plane using the t-SNE toolbox [34], as shown in Fig. 9.14.

The CMB and non-CMB samples are distinctly separated based on the features extracted

via our 3-D CNN. In contrast, embedding of the aggregated 2-D CNN representations

do not present such a clear partition pattern, highlighting the discrimination capability of

the 3-D CNN based features, which can encode richer spatial information within the

volumetric medical data.

Meanwhile, we also visualize the 3-D convolution kernels of the first two con-

volutional layers in the 3-D FCN. Fig. 9.15A illustrates the C1 layer kernels (with size

5 � 5 � 3), where each column represents a 3-D kernel which is demonstrated as three

5 � 5 maps. With a closer observation, we find that the learned kernels attend to the

spherical shapes of the lesion as well as the intensity gradients between the microbleeds

and surrounding background. More importantly, the observed slight changes of the three

maps within each column prove that the 3-D kernels have effectively captured the spatial

information across the third dimension of the volumetric data. Fig. 9.15B illustrates the

C2 layer kernels (with size 3 � 3 � 3), where each column represents a 3-D kernel

which is visualized as three 3 � 3 maps. These kernels are relatively difficult for

straightforward interpretation, because they try to construct some high-level concepts

from the output activations of the bottom layer. Nevertheless, we can still observe that

these kernels attain evidently organized patterns.

Figure 9.13 Examples of lung nodule detection results of our method with the prediction probability
and diameter indicated in red.
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With the design of the two-stage cascaded detection framework, we keep two aims

in mind: efficiency and accuracy. For an automatic lesion detection system targeting

real clinical practice, we believe that both of them are equally crucial. In the cascaded

architecture, the first stage focuses on excluding massive background regions and

screening potential candidates. In this stage, we develop the 3-D FCN to reduce

computational cost, thus meet the requirement of efficiency. The second stage focuses

on the small number of candidates and remove the difficult false positives which are

with similar appearance to the lesions. In this stage, we employ a discrimination 3-D

CNN to identify the true lesions with a high sensitivity and low false positive rate,

thus meeting the requirement of accuracy. Quantitatively, with the first stage, we

obtain hundreds of false positives per subject. After the second stage, only several false

Figure 9.14 Feature embedding from the two-dimensional CNN (left) and three-dimensional CNN
methods (right) with t-SNE toolbox. The red and blue colors correspond to the CMBs and non-CMBs,
respectively. Best viewed in color.

Visualization of 3D kernels in the 1st C layer

Visualization of 3D kernels in the 2nd C layer

(A)

(B)

Figure 9.15 Visualization of typical learned filters in the screening three-dimensional CNN model:
(A) visualization of the C1 layer kernels, where each column represents a three-dimensional kernel of
size 5 � 5 � 3, which is visualized as three 5�5 maps; (B) visualization of the C2 layer kernels, where
each column represents a three-dimensional kernel of size 3 � 3 � 3, which is visualized as three
3 � 3 maps.
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positives remain. We can see that the second stage removes nearly 99% false positive

candidates using the 3-D CNN discrimination model.

9.8 Conclusions

This chapter presents 3-D convolutional neural network based deep learning

framework for automatic lesion detection in volumetric medical images. For efficiency,

we further elaborate the 3-D FCNwhich inputs an arbitrary-sized volumetric image and

directly outputs a 3-D prediction score volume within a single forward propagation. The

two-stage cascaded framework has been extensively validated on two distinct challenging

applicationsdi.e., cerebral microbleed detection in brain MR images and lung nodule

detection in chest CT imagesdwith outstanding performance demonstrated. There are

appealing potentials to apply our efficient and accurate lesion detection system in real-

world clinical practice.
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